

TECHNISCHES DATENBLATT

ZU DEN WERKVORSCHRIFTEN WÄRMENETZE WV 01.170.02 ANHANG ZENTRALES WÄRMENETZ 170

Stand 01.01.2024

Technisches Datenblatt zu den Werkvorschriften Wärmenetze WV 01.170.02 Anhang zentrales Wärmenetz 170 Stand 01.01.2024

Im Bereich des o.g. Wärmenetzes gelten die folgenden Parameter. Eine verbindliche Zuordnung zum jeweiligen Wärmenetz erfolgt ausschliesslich durch IWB.

Die Angaben in diesem Datenblatt gelten bis einschliesslich den 30.09.2024 (dauerhafte Absenkung der maximalen Vorlauftemperatur). Ab dem 01.10.2024 gelten die Angaben des Technischen Datenblatts: WV 01.115.02 Zentrales Wärmenetz 115.

1. Auslegungsparameter Festigkeit

Die Kundenanlage (Wärmeübertrager und die dazu gehörigen Armaturen und Rohrleitungen) ist mindestens für den Nenndruck, den maximalen Betriebsdruck und die maximale Betriebstemperatur auszulegen.

	· · · · · · · · · · · · · · · · · · ·	0
•	zulässiger Betriebsdruck PS	
	zulässige Betriebstemperatur TS	

2. Auslegungsparameter Leistung

Bei der Auslegung der Kundenanlage ist zu beachten, dass die maximale Betriebstemperatur nur im Auslegungsfall (Aussentemperatur – 8°C) erreicht wird. Für die bedarfsgerechte Versorgung des Kunden sind daher für die Auslegung der Kundenanlage die nachfolgenden Angaben massgeblich. Die abonnierte Leistung wird nur bei einer Aussentemperatur von – 8°C garantiert.

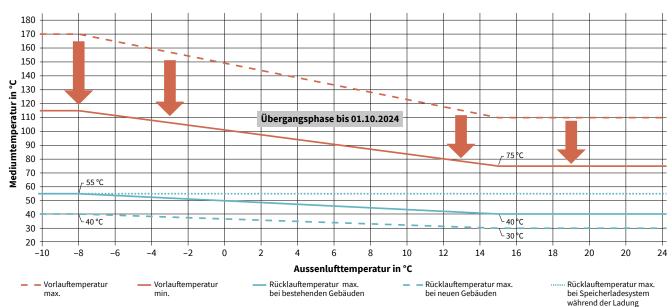
Minimale primärseitige Vorlauftemperatur (kontinuierlicher Bezug vorausgesetzt)

•	bei ta = -8°C im 24 h-Mittel
•	ab ta = 15°C im 24 h-Mittel
	- via land 0.80 and v 15.80 arised dia Farma via managed and of the same and a via diabated and and a via diabated and a via di

- zwischen – 8 °C und + 15 °C wird die Fernwärme vorlauftemperatur gleitend angepasst

Maximale primärseitige Rücklauftemperaturen (von der Kundenanlage zu gewährleisten):

•	bei bestehenden Gebäuden ausserhalb der Brauchwarmwasserladezeit	40-55°C
•	bei Neubauten ausserhalb der Brauchwarmwasserladezeit	30-40°C
	hei neuen und hestehenden Gehäuden während der Brauchwarmwasserladezeit	55°C


Maximal zulässige Temperaturdifferenz (Grädigkeit) über Wärmeaustauschern in jedem Betriebspunkt

•	zwischen dem Rucklauf sekundarseitig und dem Rucklauf primarseitig
•	zwischen dem Kaltwasser brauchwarm wasserseitig und dem Rücklauf primärseitig
	(gemessen über beide Wärmetauscher)

Drücke

• [Primärseitiger Ruheüberdruck bei 278 m.ü.M	12.4 bar
• 1	Maximale zulässiger primärseitiger Druckverlust über Hausstation (inkl. Wärmezähler)	. 0.4 bar
• 1	Maximaler Differenzdruck am geschlossenen Kombiventil	. 12 bar
• r	min. Differenzdruck im Netz	1 bar
• r	max. Differenzdruck	6 bar

Zentrales Wärmenetz 170 °C (bis 30.09.2024): Vor- und Rücklauftemperaturen

Als Neubauten gelten solche, die nach Inkrafttreten der Verordnung zum Energiegesetz (Energieverordnung, EnV) vom 29. August 2017 bewilligt und errichtet wurden.

3. Wärmeträger

Als Wärmeträger wird vollentsalztes, entgastes und mit Ammoniak alkalisiertes Wasser eingesetzt.

Die chemischen Messwerte liegen innerhalb folgender Grenzen:

- pH-Wert (bei 25°C) 9.2 9.8 (Regelwert 9.4)
- Leitfähigkeit (bei 25°C) 10–20 μS/cm (vor starksaurem Kationentauscher)
- Restsauerstoffgehalt max. 0.02 mg/L
- · Resthärte max. 0.1°f

4. Regelung

Bis zu einer endgültigen Absenkung der Vorlauftemperatur auf 115°C ist der Einsatz von Buntmetallen auf der Primärseite im zentralen Wärmenetz 170°C nicht zulässig, daher wird die sekundärseitige Vorlauftemperatur mittels Durchgangsregelventil im primärseitigen Rücklauf geregelt.

Es ist gleitend nach Aussentemperatur zu regeln, resultierend daraus muss die fernwärmeseitige Rücklauftemperatur begrenzt werden. Das im Fernwärmerücklauf eingebaute Durchgangsregelventil muss stetig regulieren. Das Regelorgan muss entsprechend der auftretenden Druckdifferenzen dicht und geräuscharm schliessen. Die primärseitigen Stellorgane müssen im stromlosen Zustand zwingend, unter Vermeidung von Druckstossauslösung, dicht schliessen. Damit die Regelarmaturen keine Druckstösse auslösen können, ist ein sanftes Regelverhalten (auch bei Störfällen) erforderlich.

Die bestellte Anschlussleistung wird bei ta = -8°C sichergestellt. Die Regeleinrichtung der Hauszentrale ist mit geeigneten Einrichtungen zu versehen, die eine Begrenzung der maximalen Fernwärmerücklauftemperatur sicherstellt. Das in der Fernwärmerücklaufleitung eingebaute Regelventil ist ein Rücklauftemperaturbegrenzer, möglichst dicht am Wärmetauscher angeordnet, vorgeschaltet.

5. Primärrohrleitungen

Bemessung von Primärrohrleitungen

Nennweite DN	max. Heisswassermenge (kg/h)	max. Leistung (Bestand) 115/55°C (kW)	max. Leistung (Neubau) 115/40°C (kW)
(20)	546	38	47
(25)	1054	74	92
32	2146	150	187
(40)	3175	222	276
50	5922	414	516
(65)	11 621	813	1013
80	17 737	1241	1546

6. Zählerdimensionierung

Zähler		Leistungsbereich [kW]			Durchflussbereich		Druck- verlust bei		
DN	Baulänge	Bestand 115 °C / 55 °C				minimal maximal		Nenndurch- fluss	
	[mm]	von	bis	von	bis	[l/h]	[l/h]	[bar]	
20	190	2	175	2	218	25	2500	0.03	
25	260	2	245	3	306	35	3500	0.07	
40	300	7	700	9	873	100	10 000	0.06	
50	270	10	1049	13	1309	150	15 000	0.14	
80	300	28	2798	35	3492	400	40 000	0.05	
100	360	42	4197	52	5238	600	60 000	0.03	

Bis DN 40 freie Einlaufstrecke vor dem Zähler: L1 = 250 mm, ab DN 50 mindestens 5 mal D in gleicher Nennweite wie der Zähler.

7. Materialien

Buntmetall

Der Einsatz von Buntmetallen ist primärseitig (von IWB-Heisswasser durchflossen) nicht zulässig.

Die auf der Primärseite verwendeten Materialien müssen den Anforderungen gemäss «Grundlagen und Richtlinien für Dampf- und Fernwärmeleitungsbau» von IWB in der jeweils gültigen Fassung erfüllen. Die zur Verwendung kommenden Verbindungselemente und Dichtungen müssen für die Betriebsbedingungen bezüglich Druck, Temperatur und Wärmeträger geeignet sein.

Rohre	Kapitel 2.1.1
Bogen	Kapitel 3.1.1
T-Stücke	Kapitel 4.1.1
Reduktionen	Kapitel 4.1.2
Vorschweissflansche	Kapitel 5.1.1
Blindflansche	Kapitel 5.1.2
Schrauben und Muttern	Kapitel 5.1.3
Wärmedämmung	Kapitel 8.1.1; 8.1.2

Alle übrigen primärseitigen Bauteile müssen den Auslegungsparametern Festigkeit genügen, dies ist nach Aufforderung von IWB mittels Herstellerbescheinigung oder Abnahmeprüfzeugnis 3.1 nach EN 10204 nachzuweisen.

max. Betriebstemperatur TS: 180°C max. Betriebsdruck PS: 22bar

Heisswasser 170°C

Kesselrohre nahtlos aus unlegiertem Stahl mit festgelegten Eigenschaften bei erhöhten Temperaturen Baureihe 2

EN 10216-2 (DIN 17175)

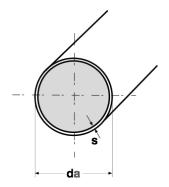
Werkstoff

EN 13480-2 1.0345

P235GH-TC1 (St 35.8 I)

Abmessung

EN 10220 (DIN 2448)


Prüfbescheinigung

EN 10204 / APZ 3.1 (DIN 50049-3.1B)

Schweissnahtvorbereitung

EN ISO 9692-1 (DIN 2559)

ab Wandstärke > 3 mm bis \leq 22 mm - Fase 30°, Stegkante 1,6 \pm 0,8 mm

DN	da	S	Gewicht leer kg/lm	Inhalt I/Im	Oberfläche m²/lm	Wärme- und Massenstrom
20	26.9	2.3	0.144	0.39	0.0858	
25	33.7	2.6	1.99	0.64	0.106	
32	42.4	2.6	2.55	1.08	0.133	
40	48.3	2.6	2.93	1.46	0.152	
50	60.3	2.9	4.11	2.33	0.189	
65	76.1	2.9	5.24	3.88	0.239	
80	88.9	3.2	6.76	5.35	0.279	siehe Tabelle
100	114.3	3.6	9.83	9.01	0.359	1.1.1
125	139.7	4.0	13.4	13.60	0.440	im Register
150	168.3	4.5	18.2	19.93	0.529	1 Allgemein
200	219.1	6.3	33.1	33.49	0.688	
225	244.5	6.3	37.0	42.22	0.768	
250	273.0	6.3	41.4	53.25	0.858	
300	323.9	7.1	55.5	75.33	1.020	
350	355.6	8.0	68.6	90.60	1.120	
400	406.4	8.8	86.3	118.7	1.270	

	Datum	Name	Projektierung Ausführung Netze Rohr		hre
Bearb.	Nov 2017	Evard	Kesselrohre nahtlos	Register	2
Gepr.	Nov 2017	Bleuler	DN20 – DN400	Blatt	2.1.1

max. Betriebstemperatur TS: 180°C max. Betriebsdruck PS: 22bar

Heisswasser 170°C

Rohrbogen nahtlos Typ A Baureihe 2

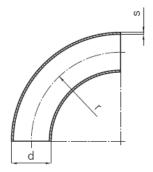
Bauart 5D und 3D

EN 10253-2 (DIN 2605)

Werkstoff

EN13480-2 1.0345

P235GH-TC1 (St 35.8 I)


Prüfbescheinigung

EN 10204 / ABZ 3.1 (DIN 50049-3.1B)

Schweissnahtvorbereitung

EN ISO 9692-1 (DIN 2559)

ab Wandstärke > 3 mm bis ≤ 22 mm - Fase 30°, Stegkante 1,6 ± 0,8 mm

DN	d	S	r	kg	r	kg
		Вац	Baua	Bauart 3D		
20	26.9	2.3	57.5	0.13	-	-
25	33.7	2.6	72.5	0.25	-	-
32	42.4	2.6	92.5	0.40	-	-
40	48.3	2.6	109.5	0.50	-	-
50	60.3	2.9	137.5	0.88	-	-
65	76.1	2.9	175	1.45	-	-
80	88.9	3.2	207.5	2.23	-	-
100	114.3	3.6	270	4.00	152	2.37
125	139.7	4.0	330	7.20	190	4.04
150	168.3	4.5	390	11.2	228	6.05
200	219.1	6.3	515	24.9	305	15.8
250	273.0	6.3	650	41.5	381	24.9
300	323.9	7.1	770	67.5	457	40.0
350	355.6	8.0	850	94.5	533	57.0
400	406.4	8.8	970	131.0	610	82.0

	Datum	Name	Projektierung Ausführung Netze	Rohrbogen	
Bearb.	Nov 2017	Evard	Rohrbogen nahtlos Typ A	Register	3
Gepr.	Nov 2017	Bleuler	Bauart 5D/3D DN20 – DN400	Blatt	3.1.1

max. Betriebstemperatur TS: 180°C max. Betriebsdruck PS: 22bar

Heisswasser 170°C

Formstücke zum Einschweisssen T-Stücke egal nahtlos Typ B Baureihe 2 oder Typ A Baureihe gem. Tabelle EN 10253-2 (DIN 2615 Teil 1+2)

Werkstoff

EN 13480-2

1.0345 / P235GH-TC1 (St 35.8 I)

Prüfbescheinigung

EN 10204 / ABZ 3.1 (DIN 50049-3.1B)

Schweissnahtvorbereitung

EN ISO 9692-1 (DIN 2559)

ab Wandstärke > 3 mm bis ≤ 22 mm - Fase 30°, Stegkante 1,6 ± 0,8 mm

T-Stücke egal immer eine Nennweite grösser wie das Grundrohr einbauen.

Bis ≤DN80 sind T-Stücke Typ B egal Baureihe 2 einzubauen. Bei T-Stücken ≥DN100 wird die Verwendung von Typ A oder B durch die Rohrstatik bestimmt. Sind T-Stücke Typ B im Handel nicht erhältlich, müssen TStücke Typ A Baureihe 3-6 gem. Tabelle eingebaut werden.

Die Formstücke vom Typ B weisen erhöhte Wanddicken am Formstückkörper auf, so dass sie dem gleichen Innendruck wie ein gerades Rohr mit den gleichen Nennabmessungen aus dem gleichen Werkstoff standhalten können.

	DN				Тур В			Тур А	
	d1	а	b	s1	Baureihe	kg	s1	Baureihe	kg
	d2			s2	EN-Norm		s2	EN-Norm	
25	33.7	38	38	2.6	2	0.29	3.2	3	0.35
32	42.4	48	48	2.6	2	0.42	3.6	3	0.57
40	48.3	57	57	2.6	2	0.59	4.0	3	0.90
50	60.3	64	64	2.9	2	0.90	4.0	3	1.30
65	76.1	76	76	2.9	2	1.35	5.6	4	2.10
80	88.9	86	86	3.2	2	1.95	5.6	4	3.40
100	114.3	105	105	3.6	2	3.30	6.3	4	5.90
125	139.7	124	124	4.0	2	5.10	6.3	4	9.00
150	168.3	143	143	4.5	2	8.10	11.0	5	16.50
200	219.1	178	178	6.3	2	18.0	12.5	5	29.50
250	273.0	216	216	6.3	2	26.5	12.5	5	46.00
300	323.9	254	254	7.1	2	42.0	17.5	6	68.00
350	355.6	279	279	8.0	2	60.0	16.0	5	119.00
400	406.4	305	305	8.8	2	82.0	17.5	5	160.00

Beim Einbau von T-Stücken Typ A Baureihe 3-6 dickwandig, müssen die Schweissenden durch Ausdrehen (Ausdrehwinkel 10°) an die Wandstärke von Grundrohr / Konus Baureihe 2 angepasst werden.

	Datum	Name	Projektierung Ausführung Netze	Rohrbogen		
Bearb.	Nov 2017	Evard	T-Stücke egal nahtlos Typ B oder	Register	4	
Gepr.	Nov 2017	Bleuler	Typ A dickwandig DN20 – DN400	Blatt	4.1.1	

max. Betriebstemperatur TS: 180°C

max. Betriebsdruck PS: 22bar

Heisswasser 170°C

Formstücke zum Einschweissen

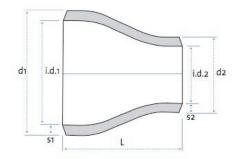
Reduzierstücke nahtlos Typ B konzentrisch

Baureihe 2

EN 10253-2 (DIN 2616-Teil 1)

Werkstoff

EN 13480-2 1.0345 P235GH-TC1 (St 35.8 I)


Prüfbescheinigung

EN 10204 / APZ 3.1 (DIN 50049-3.1B)

Schweissnahtvorbereitung

EN ISO 9692-1 (DIN 2559)

ab Wandstärke > 3 mm bis \leq 22 mm - Fase 30°, Stegkante 1,6 \pm 0,8 mm

DN/DN	d1	s1	d2	s2	L	Baureihe	kg
25/20	33.7	2.6	26.9	2.3	51	2	0.11
32/25	42.4	2.6	33.7	2.6	51	2	0.15
32/20	42.4	2.6	26.9	2.3	51	2	0.15
40/32	48.3	2.6	42.4	2.6	64	2	0.18
40/25	48.3	2.6	33.7	2.6	64	2	0.18
50/40	60.3	2.9	48.3	2.6	64	2	0.30
50/32	60.3	2.9	42.4	2.6	76	2	0.30
50/25	60.3	2.9	33.7	2.6	76	2	0.30
65/50	76.1	2.9	60.3	2.9	89	2	0.42
65/40	76.1	2.9	48.3	2.6	89	2	0.42
65/32	76.1	2.9	42.4	2.6	89	2	0.42
65/25	76.1	2.9	33.7	2.6	89	2	0.42
80/65	88.9	3.2	76.1	2.9	89	2	0.55
80/50	88.9	3.2	60.3	2.9	89	2	0.55
80/40	88.9	3.2	48.3	2.6	89	2	0.55
80/32	88.9	3.2	42.4	2.6	89	2	0.55
100/80	114.3	3.6	88,9	3.2	102	2	0.98
100/65	114.3	3.6	76.1	2.9	102	2	0.98
100/50	114.3	3.6	60,3	2.9	102	2	0.98
125/100	139.7	4.0	114,3	3.6	127	2	1.70
125/80	139.7	4.0	88,9	3.2	127	2	1.70
125/65	139.7	4.0	76.1	2.9	127	2	1.70
125/50	139.7	4.0	60,3	2.9	127	2	1.70

	Datum	Name	Projektierung Ausführung Netze	Formstücke		
Bearb.	Nov 2017	Evard	Reduzierstücke nahtlos Typ B konzentrisch	Register	4	
Gepr.	Nov 2017	Bleuler	DN25 – DN125	Blatt	4.1.2	

max. Betriebstemperatur TS: 180°C max. Betriebsdruck PS: 22bar

Heisswasser 170°C

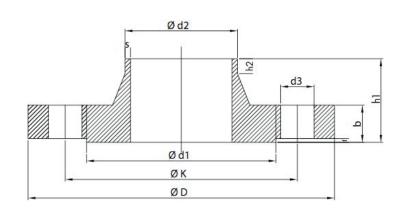
Vorschweissflansche Typ 11 PN40

mit Dichtleistenform B1

EN 1092-1 (DIN 2635)

Werkstoffgruppe 3E0

EN 1092-1


Werkstoff

1.0352 / P245GH oder

1.0460 / P250GH1

Prüfbescheinigung

DIN EN 10204 / APZ 3.1

Dichtungen für Flanschverbindung siehe Blatt 1.0.3 im Register 1. Allgemein

DN	d2	PN	D	K	b	h1	S	d3	Schrauben	Anzahl	Kg
20	26,9	40	105	75	18	40	2,30	14	M12	4	1,09
25	33,7	40	115	85	18	40	2,60	14	M12	4	1,30
32	42,4	40	140	100	18	42	2,60	18	M16	4	1,91
40	48.3	40	150	110	18	45	2.60	18	M16	4	2.15
50	60,3	40	165	125	20	48	2,90	18	M16	4	2,85
65	76,1	40	185	145	22	52	2,90	18	M16	8	3,68
80	88,9	40	200	160	24	58	3,20	18	M16	8	4,78
100	114,3	40	235	190	24	65	3,60	22	M20	8	6,46
125	139,7	40	270	220	26	68	4,00	26	M24	8	8,86
150	168,3	40	300	250	28	75	4,50	26	M24	8	11,70
200	219,1	40	375	320	34	88	6,30	30	M27	12	21,00
250	273,0	40	450	385	38	105	7,10	33	M30	12	34,20
300	323,9	40	515	450	42	115	8,00	33	M30	16	47,60
350	355,6	40	580	510	46	125	8,80	36	M33	16	69,30
400	406,4	40	660	585	50	135	11,00	39	M36	16	98,00

¹ Hinweis im SWISSTS Prüfbericht PED-P-COS.EP.5517123-1-Revision 1 - Punkt. 3 - beachten ! (Zulassung Werkstoff im Anwendungsbereich der DGRL)

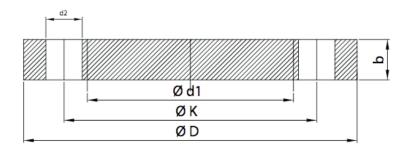
	Datum	Name	Projektierung Ausführung Netze	Flansche&Schrauben		
Bearb.	Nov 2017	Evard	Vorschweissflansche Typ 11 PN40	Register	5	
Gepr.	Nov 2017	Bleuler	DN20 – DN400	Blatt	5.1.1	

max. Betriebstemperatur TS: 180°C max. Betriebsdruck PS: 22bar

Heisswasser 170°C

Blindflansche Typ 5 PN40 mit Dichtflächenform A

EN 1092-1 (DIN 2527)


Werkstoffgruppe 3E0

EN 1092-1

Werkstoff

1.0352 / P245GH oder

1.0460 / P250GH¹

Prüfbescheinigung

EN 10204 / APZ 3.1

Dichtungen für Flanschverbindung siehe Blatt 1.0.3 im Register 1. Allgemein

DN	PN	D	K	b	d2	Schrauben	Anzahl	kg
20	40	105	75	18	14	M12	4	1.14
25	40	115	85	18	14	M12	4	1.38
32	40	140	100	18	18	M16	4	2.03
40	40	150	110	18	18	M16	4	2.85
50	40	165	125	20	18	M16	4	3.20
65	40	185	145	22	18	M16	8	4.29
80	40	200	160	24	18	M16	8	5.54
100	40	235	190	24	22	M20	8	7.60
125	40	270	220	26	26	M24	8	10.80
150	40	300	250	28	26	M24	8	14.60
200	40	375	320	36	30	M27	12	28.80
250	40	450	385	38	33	M30	12	44.40
300	40	515	450	42	33	M30	16	64.20
350	40	580	510	46	36	M33	16	89.50
400	40	660	585	50	39	M36	16	127.00

¹ Hinweis im SWISSTS Prüfbericht PED-P-COS.EP.5517123-1-Revision 1 - Punkt. 3 - beachten ! (Zulassung Werkstoff im Anwendungsbereich der DGRL)

	Datum	Name	Projektierung Ausführung Netze	Flansche&Schrauben		
Bearb.	Nov 2017	Evard	Blindflansche Typ 5 PN40	Register	5	
Gepr.	Nov 2017	Bleuler	DN20 – DN400	Blatt	5.1.2	

max. Betriebstemperatur TS: 180°C max. Betriebsdruck PS: 22bar

Heisswasser 170°C

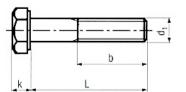
Sechskantschrauben und Muttern aus Stahl für Flanschverbindungen PN40 EN 13480-3

Schlüsselweiten nach ISO 272 geändert

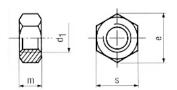
Sechskantschraube mit Schaft und Regelgewinde Stahl blank für Druckbehälterbau

EN ISO 4014 (DIN 931)

Festigkeitsklasse 5.6 gestempelt nach


EN ISO 898-1

Sechskantmutter ISO-Typ 1 mit Regelgewinde Sahl blank für Druckbehälterbau


EN ISO 4032 (DIN934) Festigkeitsklasse **5-2** gestempelt nach EN ISO 898-2

Werkstoff

gemäss EN 10269 Stahl für erhöhte Temperaturen bis 300°C nicht aus Thomas-oder Automatenstählen

DN	Sechskantschrauben 5.6 für PN40	Sechskantmutter Typ 1 / 5-2 m = ISO/DN
20	4 Stk. M12 x 50	10.8/10
25	4 Stk. M12 x 55	10.8/10
32	4 Stk. M16 x 55	14.8/13
40	4 Stk. M16 x 55	14.8/13
50	4 Stk. M16 x 60	14.8/13
65	8 Stk. M16 x 65	14.8/13
80	8 Stk. M16 x 70	14.8/13
100	8 Stk. M20 x 70	18.0/16
125	8 Stk. M24 x 80	21.5/19
150	8 Stk. M24 x 80	21.5/19
200	12 Stk. M27 x 100	23.8/22
250	12 Stk. M30 x 110	25.6/24
300	16 Stk. M30 x 120	25.6/24
350	16 Stk. M33 x130	28.7/26
400	16 Stk. M36 x 140	31.0/29

	Datum	Name	Projektierung Ausführung Netze	Flansche&Schrauben		
Bearb.	Nov 2017	Evard	Sechskantschrauben und Muttern Stahl	Register	5	
Gepr.	Nov 2017	Bleuler	blank für Flanschenverbindungen PN40	Blatt	5.1.3	

max. Betriebstemperatur TS: 180°C max. Betriebsdruck PS: 22bar

Heisswasser 170°C

Glaswolle Rohrschale (zB. Pipelane SGR 90kg)

EN 14303

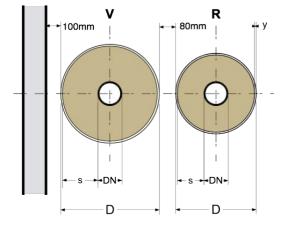
Schale in der Längsachse geschlitzt.

Länge 120cm

Technische Eigenschaften

Rohdichte mind. 80kg/m³

Wärmeleitfähigkeit: 0.034 W/mK bei t_m 50°C und


0.039 W/mK bei t_m 100°C EN ISO 8497

Brandverhalten nicht brennbar (Brandkennziffer 6q.3)

Anwendungstemperatur ≤ 300°C

Der Dämmstoff darf keine korrosionsfördernde und

gesundheitsschädliche Stoffe enthalten.

Aufbau der Rohrdämmung

Die erforderliche Dämmstärke gem. Tabelle muss mit Rohrschalen aus Glaswolle ein- oder zweilagig erreicht werden. Längs- und Querstoss sind versetzt anzubringen. Jede Rohrschale ist mit 6 verzinkten Bindedrähte von \varnothing 0.8mm bis DN100 und von \varnothing 1.0mm > DN100 am Rohr zu befestigen.

Bei Lieferschwierigkeiten von Glaswolle Rohrschalen können nach Rücksprache mit IWB andere mineralische Dämmprodukte mit gleichen technischen Eigenschaften eingesetzt werden.

Ummantelung Dämmung

mit Aluminiumblech in Gebäuden und Leitungstunneln (Stärke siehe Tabelle) mit Dachpappe F3t Stärke 1.6mm in Fernwärmekanälen und Schächten

	Heisswasser 170°C										
	Rohr	٧	R	F	₹L	Alum.					
DN	Ø	S	D	S	D	у					
20	26.9x2.3	90	208	60	148	0.8					
25	33.7x2.6	100	235	60	155	8.0					
32	42.4x2.6	120	284	70	184	0.8					
40	48.3x2.6	120	289	70	189	0.8					
50	60.3x2.9	120	301	80	221	0.8					
65	76.1x2.9	140	357	80	237	8.0					
80	88.9x3.2	140	370	80	250	0.8					
100	114.3x3.6	150	415	90	295	0.8					
125	139.7x4.0	160	461	100	341	1.0					
150	168.3x4.5	170	509	110	389	1.0					
200	219.1x6.3	190	600	120	460	1.0					
250	273.0x6.3	210	694	120	514	1.0					
300	323.9x7.1	220	765	130	585	1.0					
350	355.6x8.0	230	817	130	617	1.0					
400	406.4x8.8	240	888	140	688	1.0					
	Dämmstärke		anschlu: äude	ssleitung	gen im	-					
32	42.4x2.6	90	224	50	144	0.8					
50	60.3x2.9	100	262	60	182	0.8					
80	88.9x3.2	120	331	80	251	0.8					

	Datum	Name	Projektierung Ausführung Netze	Wärmedämmung		
Bearb.	Nov 2017	Evard	Dämmstärke für Rohrleitungen	Register	8	
Gepr.	Nov 2017	Bleuler	HW 170°C DN20 – DN400	Blatt	8.1.1	

max. Betriebstemperatur TS: 180°C max. Betriebsdruck PS: 22bar

Heisswasser 170°C

Dämmkappen für Plattenkeilschieber PN40

Steinwollschalen

Glasfasergewebe mit einseitiger Aluminiumfolie Befestigung: rostfreie Stahlbänder mit Schloss

Technische Eigenschaften

Steinwollschalen: aus Block geschnitten Rohdichte mind. 80kg/m³ Brandkennziffer 6q.3

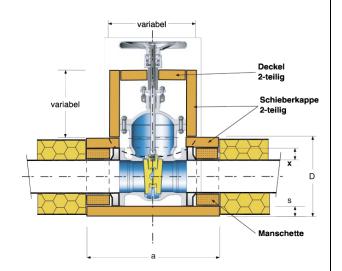
Anwendungstemperatur bis 640°C

Umhüllung:

Glasfasergewebe aus E-Glas, einseitig mit

Aluminiumfolie

beschichtet. Dicke min.1.3mm


Temperaturbeständigkeit Gewebe min. 450°C

Alufolie min. 180°C

Nähte:

Glasgarn Temperaturbeständigkeit min.450°C

reiss- und verrottungsfest

<u>Für die Herstellung der Dämmkappen dürfen keine Isolationsmatten, Stützkarton oder Stützbleche verwendet werden.</u>

Die Festigkeit der Dämmkappen muss durch die Verwendung von Isolierschalen/Platten mit dem geforderten Raumgewicht gewährleistet werden.

Durch die Verwendung von verschiedenen Fabrikaten müssen die genauen Masse für die Dämmkissen am verbauten Schieber aufgenommen werden.

DN	PN	~ a	~ S	~ D	Manschette gestopft einseitig zum öffnen O Dicke=x/Breite=d
100	40	610	130	495	60/50
150	40	750	130	560	65/60
200	40	900	130	620	75/100
250	40	1030	150	725	85/100
300	40	1160	150	785	95/120
350	40	1290	150	855	110/140
400	40	1420	160	940	125/150

	Datum	Name	Projektierung Ausführung Netze	Wärmedämmung	
Bearb.	Nov 2017	Evard	Dämmkappen für Plattenkeilschieber PN40		8
Gepr.	Nov 2017	Bleuler	DN100 – DN400	Blatt	8.1.2